
refellips

Hayden Robertson, Isaac Gresham, Andrew Nelson

Feb 17, 2023

CONTENTS:

1 Installation 3

2 Getting started 5
2.1 Fitting an ellipsometry dataset . 5

3 Examples 13

4 Frequently Asked Questions 15
4.1 What’s the best way to ask for help or submit a bug report? . 15
4.2 What are the ‘fronting’ and ‘backing’ media? . 15
4.3 What formats/types of ellipsometry data does refellips handle? . 15
4.4 Where do I find dispersion curves for a material? . 15
4.5 How do I make my own dielectric function/dispersion curve? . 16
4.6 What EMA methods does refellips provide? . 16
4.7 Can I save models/objectives to a file? . 17

5 Testimonials 19

6 API reference 21
6.1 refellips . 21

7 Indices and tables 35

Python Module Index 37

Index 39

i

ii

refellips

refellips is a Python package designed for the analysis of variable angle spectroscopic ellipsometry (VASE) data. It is
a flexible package built around the widely used refnx package used extensively for the analysis of neutron and X-ray
reflectivity data.

The package makes use of TMM package written by Steven Byrnes to calculate ellipsometric parameters. The physics
background behind those calculations can be found here.

Demonstrations of refellips are available here as well as on the GitHub repository.

The refellips package is free software distributed under the BSD 3-clause license. If you are interested in participating
in this project, please use the GitHub repository; all contributions are welcomed.

CONTENTS: 1

https://github.com/refnx/refellips
https://github.com/refnx/refnx
https://pypi.org/project/tmm/
https://sjbyrnes.com/
https://arxiv.org/abs/1603.02720
https://github.com/refnx/refellips
https://github.com/refnx/refellips

refellips

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

refellips has been tested on Python 3.8, 3.9. As refellips utilises the same refnx codebase, the refnx package and its
dependencies must be also installed.

The refellips wheels are readily available on PyPI, it is a pure Python package.

pip install refellips

3

refellips

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

Here we will briefly demonstrate loading in ellipsometry datasets, creating a model and optimising that model to the
dataset. For a more detailed description of model creation, please see the getting started tutorial on refnx.

2.1 Fitting an ellipsometry dataset

We begin by importing all of the relevant packages.

[1]: import sys
import os
from os.path import join as pjoin
import numpy as np
import matplotlib.pyplot as plt
import scipy

import refnx
from refnx.analysis import CurveFitter
from refnx.reflect import Slab

import refellips
from refellips.dataSE import DataSE, open_EP4file
from refellips.reflect_modelSE import ReflectModelSE
from refellips.objectiveSE import ObjectiveSE
from refellips.structureSE import RI, Cauchy, load_material

For reproducibility, it is important to note the versions of software that you’re using.

[2]: print(
f"refellips: {refellips.version.version}\n"
f"refnx: {refnx.version.version}\n"
f"scipy: {scipy.version.version}\n"
f"numpy: {np.version.version}"

)

refellips: 0.0.3.dev0+92f1c50
refnx: 0.1.30
scipy: 1.8.0
numpy: 1.22.3

5

https://refnx.readthedocs.io/en/latest/getting_started.html

refellips

2.1.1 Loading a dataset

refellips has the capability of loading data directly from output files of both Accurion EP3 and EP4 ellipsometers, as
well as Horiba ellipsometers using open_EP4file and open_HORIBAfile respectively.

Alternatively, other datasets can be imported using DataSE. The file must be formatted to contain four columns: wave-
length, angle of incidence, psi and delta.

[3]: pth = os.path.dirname(refellips.__file__)
dname = "testData1_11nm_PNIPAM_on_Si_EP4.dat"
file_path = pjoin(pth, "../", "demos", dname)

We will now use DataSE to import our dataset.

[4]: data = DataSE(data=file_path)

2.1.2 Creating a model for our interface

As with refnx, ComponentSE objects are assembled into a StructureSE object which describes the interface. The
simplest of these ComponentSE objects is a SlabSE, which is what we will use here.

We begin by loading in dispersion curves which describe the refractive index for each layer within our StructureSE
(i.e., for each ComponentSE). refellips offers multiple ways to prescribe the refractive index of a layer. Here we
will demonstrate the different ways to prescribe refractive indices. - RI(): Users can provide a refractive index
(𝑛) and extinction coefficient (𝑘) for a given wavelength by RI([n, k]) or alternatively, for spectroscopic analy-
sis users load in their own dispersion curve of 𝑛,𝑘 as a function of wavelength by providing a path to the desired file
as RI('my_materials\material.csv'). - Cauchy(): Creates a dispersion curve of a given material using the
provided 𝑎, 𝑏 and 𝑐 values. - load_material(): Searches the refellips materials database for the provided material.

Note, dispersion curves provided in the refellips materials database are downloaded as a .csv file from refractivein-
dex.info. When providing a dispersion curve, files must contain at least two columns, assumed to be wavelength (in
microns) and refractive index. If three columns are provided the third is loaded as the extinction coefficient. Further
details on modelling material optical properties are provided on the FAQ page.

[5]: si = load_material("silicon")
sio2 = RI([1.4563, 0])
PNIPAM = Cauchy(1.47, 0.00495)
air = RI(pjoin(pth, "materials/air.csv"))

Now we have defined the refractive indices of our layers, we can create a Slab object for each interfacial layer.

[6]: # this is a 20 Angstrom layer
silica_layer = sio2(20)

polymer_layer = PNIPAM(200)

Each Slab has an associated thickness (as defined above), roughness, and volume fraction of solvent. As this is a dry
film we will leave vfsolv as 0.

[7]: silica_layer.name = "Silica"
silica_layer.thick.setp(vary=True, bounds=(1, 30))
silica_layer.vfsolv.setp(vary=False, value=0)

polymer_layer.name = "PNIPAM"
(continues on next page)

6 Chapter 2. Getting started

https://refractiveindex.info/
https://refractiveindex.info/
https://refellips.readthedocs.io/en/latest/faq.html#where-do-i-find-dispersion-curves-for-a-material

refellips

(continued from previous page)

polymer_layer.thick.setp(vary=True, bounds=(100, 500))
polymer_layer.vfsolv.setp(vary=False, value=0)

We now create the Structure by assembling the Component objects. Our structure is defined from fronting to backing,
where the thickness of the fronting and backing are defined to be infinite (i.e., np.inf).

[8]: structure = air() | polymer_layer | silica_layer | si()

Finally, we can create our model. A wavelength must be provided here, however, if your ellipsometry dataset contains
a wavelength that will be automatically used. We have the option to define the delta_offset parameter here.

[9]: model = ReflectModelSE(structure)

model.delta_offset.setp(value=0, vary=False, bounds=(-10, 10))

We can now have a quick preview of how our model compares to our dataset prior to fitting.

[10]: fig, ax = plt.subplots()
axt = ax.twinx()

aois = np.linspace(50, 75, 100)

for dat in data.unique_wavelength_data():
wavelength, aois, psi_d, delta_d = dat
wavelength_aois = np.c_[np.ones_like(aois) * wavelength, aois]

psi, delta = model(wavelength_aois)
ax.plot(aois, psi, color="r")
p = ax.scatter(data.aoi, data.psi, color="r")

axt.plot(aois, delta, color="b")
d = axt.scatter(data.aoi, data.delta, color="b")

ax.legend(handles=[p, d], labels=["Psi", "Delta"])
ax.set(ylabel="Psi", xlabel="AOI, °")
axt.set(ylabel="Delta")
plt.show()

2.1. Fitting an ellipsometry dataset 7

refellips

2.1.3 Creating an objective

We will now create an objective. The Objective object is made by combining the model and the data, and is used to
calculate statistics during the fitting process.

[11]: objective = ObjectiveSE(model, data)

2.1.4 Fitting the data

The optimisation of our Objective is performed by refnx’s CurveFitter. Data can be fit using a local optimisation
such as least_squares, or a more global optimisation technique such as differential_evolution. For more
information on the available fitting methods, see *refnx*.

[12]: fitter = CurveFitter(objective)
fitter.fit(method="least_squares");

2.1.5 Optimised model and data post fit

We can now view our optimised objective, including our fit parameters. Users can plot this using the above method, or
alternatively use the objectiveSE.plot() function.

[13]: fig, ax = objective.plot()

8 Chapter 2. Getting started

https://refnx.readthedocs.io/en/latest/refnx.analysis.html#refnx.analysis.CurveFitter.fit

refellips

[14]: for i, x in enumerate(objective.model.parameters):
print(x)

__
Parameters: 'instrument parameters'
<Parameter:'delta offset' , value=0 (fixed) , bounds=[-10.0, 10.0]>
__
Parameters: 'Structure - '
__
Parameters: ''
<Parameter: ' - thick' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter: ' - rough' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter:' - volfrac solvent', value=0 (fixed) , bounds=[0.0, 1.0]>
__
Parameters: 'PNIPAM'
<Parameter: ' - thick' , value=132.339 +/- 982 , bounds=[100.0, 500.0]>
<Parameter: ' - cauchy A' , value=1.47 (fixed) , bounds=[-inf, inf]>
<Parameter: ' - cauchy B' , value=0.00495 (fixed) , bounds=[-inf, inf]>
<Parameter: ' - cauchy C' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter: ' - rough' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter:' - volfrac solvent', value=0 (fixed) , bounds=[0.0, 1.0]>
__
Parameters: 'Silica'
<Parameter: ' - thick' , value=1 +/- 1.01e+03, bounds=[1.0, 30.0]>
<Parameter: ' - rough' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter:' - volfrac solvent', value=0 (fixed) , bounds=[0.0, 1.0]>
__
Parameters: ''
<Parameter: ' - thick' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter: ' - rough' , value=0 (fixed) , bounds=[-inf, inf]>
<Parameter:' - volfrac solvent', value=0 (fixed) , bounds=[0.0, 1.0]>

We can also view the resultant refractive index profile of the interface as well.

[15]: structure.reverse_structure = True
plt.plot(*structure.ri_profile())

(continues on next page)

2.1. Fitting an ellipsometry dataset 9

refellips

(continued from previous page)

plt.text(110, 3.7, f"{structure.wavelength} nm", fontsize=14)

[15]: Text(110, 3.7, '658.0 nm')

2.1.6 Using the plotting tools

[16]: sys.path.insert(1, "../tools")
from plottools import plot_ellipsdata, plot_structure

[18]: fig, ax = plt.subplots(1, 2, figsize=(10, 4))

plot_ellipsdata(ax[0], data=data, model=model, xaxis="aoi")
plot_structure(ax[1], objective=objective)

fig.tight_layout()

10 Chapter 2. Getting started

refellips

2.1.7 Saving the objective

If you would like to save the Objective or model to a file, this is best done through serialisation to a Python pickle.

[19]: import pickle

pickle.dump(objective, open("my_objective.pkl", "wb"))

You can then simply reload your objective.

[20]: objective = pickle.load(open("my_objective.pkl", "rb"))

If you would like to save your objective as a .csv file, this can be done as below.

[21]: with open("my_objective.csv", "wb") as fh:
data = objective.data
wav = data.wavelength
aoi = data.aoi
psi_d = data.psi
delta_d = data.delta
for dat in data.unique_wavelength_data():

wavelength, aois, psi_d, delta_d = dat
wavelength_aois = np.c_[np.ones_like(aois) * wavelength, aois]
psi_m, delta_m = objective.model(wavelength_aois)

save_arr = np.array([wav, aoi, psi_d, delta_d, psi_m, delta_m])

np.savetxt(
fh,
save_arr.T,
delimiter=",",
header="Wavelength, AOI, Measured Psi, Measured Delta, Modelled Psi, Modelled␣

→˓Delta",
)

2.1. Fitting an ellipsometry dataset 11

refellips

12 Chapter 2. Getting started

CHAPTER

THREE

EXAMPLES

13

refellips

14 Chapter 3. Examples

CHAPTER

FOUR

FREQUENTLY ASKED QUESTIONS

A list of common questions.

4.1 What’s the best way to ask for help or submit a bug report?

If you have any questions about using refellips or calculations performed by refellips please contact us or use the GitHub
Issues tracker. If you find a bug in the code or documentation, please use GitHub Issues.

4.2 What are the ‘fronting’ and ‘backing’ media?

The ‘fronting’ and ‘backing’ media are infinite. The ‘fronting’ medium carries the incident beam of radiation, whilst
the ‘backing’ medium will carry the transmitted beam away from the interface. In short, the fronting media is the
medium that the radiation interacts with first, and the backing media is the medium which the radiation interacts with
last.

For example, consider a system with an oxidised silicon wafer where the ambient material is air; the fronting media
would be air and the backing media would be silicon.

4.3 What formats/types of ellipsometry data does refellips handle?

refellips has the capability of loading data directly from both Accurion EP3 and EP4 ellipsometers, as well Horiba
ellipsometers using the open_EP4file() and open_HORIBAfile() functions, respectively.

Alternatively, users also have the option to load-in other datasets using DataSE. Files loaded using DataSE must contain
four columns (with header): wavelength, angle of incidence, psi and delta.

4.4 Where do I find dispersion curves for a material?

refellips contains preloaded dispersion curves for select materials, which are accessible by the load_material() func-
tion. These materials are sourced from refractiveindex.info, and include air, a void, water, dimethyl sulfoxide, silicon,
silica, gold, aluminium oxide, polystyrene, poly(N-isopropylacrylamide) (PNIPAM) and a material that represents a
diffuse polymer.

If required, users can download their own dispersion curves from refractiveindex.info and load them into refellips using:

my_material = RI("my_dispersion.csv")

15

mailto:andyfaff+refellips@gmail.com
https://github.com/refnx/refellips/issues
https://github.com/refnx/refellips/issues
https://github.com/refnx/refellips/issues
https://refractiveindex.info
https://refractiveindex.info

refellips

The loaded file must contain at least two columns, assumed to be wavelength (in microns) and refractive index. If three
columns are provided, the third is loaded as the extinction coefficient. The refellips maintainers are happy to include
additional dispersion curves with the package; please ask if you’d like this to happen.

Alternatively, users have the option to choose from any of the in-built oscillator functions to model the optical properties
of their material: Cauchy, Sellmeier, Lorentz, TaucLorentz and Gauss. Both the Cauchy and Sellmeier oscillators
monotonically decrease in refractive index with increasing wavelength and are therefore not Kramers-Kronig consistent.
These optical models are frequently used to model the optical properties of transparent materials, however, the Sellmeier
is more accurate at higher wavelengths, i.e., the infra-red region. Users can specify Cauchy and Sellmeier parameters
for their material:

my_cauchy_material = Cauchy(A=a, B=b, C=c)
my_sellmeier_material = Sellmeier(Am, En, P, Einf)

The Lorentz Tauc-Lorentz and Gaussian functions are Kramers-Kronig consistent, and allow users to implement mul-
tiple oscillators. Lorentz oscillators are typically employed when working with materials above the fundamental band
gap, describing well the optical properties of transparent and weakly absorbing materials. Tauc-Lorentz are often
normally used for amorphous materials. Gaussian oscillators are typically used for absorbing materials, where the
complex component models the Gaussian absorption and the real component is its Kramers-Kronig relation (a Hilbert
transform). Users can implement a one Lorentz or Tauc-Lorentz, or a two Gaussian oscillator model for their material
by:

my_lorentz_material = Lorentz([Am], [Br], [En], Einf)
my_TaucLorentz_material = TaucLorentz([Am], [C], [En], Eg, Einf)
my_gaussian_material = Gauss([Am_1, Am_2], [Br_1, Br_2], [En_1, En_2], Einf)

A demonstration on how to implement a user defined oscillator/dispersion curve is presented in the User defined os-
cillator notebook. Parameter values for Cauchy, Sellmeier, Lorentz and Tauc-Lorentz are provided by Horiba. Cauchy
parameters can also be found on refractiveindex.info.

Alternatively, users can simply supply a refractive index (n) and extinction coefficient (k) for a single wavelength
measurement:

my_material = RI([n, k])

4.5 How do I make my own dielectric function/dispersion curve?

A demonstration on how to implement a user defined oscillator/dispersion curve is presented in the User defined oscil-
lator notebook.

4.6 What EMA methods does refellips provide?

refellips offers the three main methods of effective medium approximations (EMA): linear, Maxwell Garnett and
Bruggeman. All EMA calculations performed in refellips are based on two-component mixing and done so using
the complex dielectric function, not refractive indices and extinction coefficients.

For the examples below, 𝜀1 and 𝑓1 relate to the complex dielectric function and volume fraction of the lower material
(most commonly the host material) and 𝜀2 and 𝑓2 relate to the complex dielectric function and volume fraction of the
upper material (most commonly the inclusion material; e.g., solvent). It is important to note that 𝑓1 + 𝑓2 = 1.

For a linear EMA, the dielectric constant of the mixture is simply the sum of the products of the substituent dielectric

16 Chapter 4. Frequently Asked Questions

https://nbviewer.org/github/refnx/refellips/blob/master/demos/refellipsDemo_UserDefinedOscillator.ipynb
https://nbviewer.org/github/refnx/refellips/blob/master/demos/refellipsDemo_UserDefinedOscillator.ipynb
https://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Cauchy_and_related_empirical_dispersion_Formulae_for_Transparent_Materials.pdf
https://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Lorentz_Dispersion_Model.pdf
https://www.horiba.com/fileadmin/uploads/Scientific/Downloads/OpticalSchool_CN/TN/ellipsometer/Tauc-Lorentz_Dispersion_Formula.pdf
https://refractiveindex.info
https://nbviewer.org/github/refnx/refellips/blob/master/demos/refellipsDemo_UserDefinedOscillator.ipynb
https://nbviewer.org/github/refnx/refellips/blob/master/demos/refellipsDemo_UserDefinedOscillator.ipynb

refellips

function and volume fraction (Equation (4.1)). We hypothesise that the linear EMA will be sufficient for most use cases.

𝜀linear = 𝑓1𝜀1 + 𝑓2𝜀2 (4.1)

For the Maxwell Garnett and Bruggeman EMA methods, a depolarisation factor (𝑣) is included to account for potential
electric field screening by anisotropic inclusions. When (𝑣 = 1/3), Equation (4.2) and (4.3) reduce down to the
isotropic case, assuming all inclusions are spherical in nature. We anticipate that only expert users will use these EMA
methods or alter the depolarisation factor.

The complex dielectric function for a mixed layer using the Maxwell-Garnett EMA is determined using Equation (4.2),

𝜀MG = 𝜀1
𝜀1 + (𝑣𝑓1 + 𝑓2)(𝜀2 − 𝜀1)

𝜀1 + 𝑣𝑓1(𝜀2 − 𝜀1)
(4.2)

The Bruggeman EMA method is employed using Equation (4.3),

𝜀BG =
𝑏+

√︀
𝑏2 − 4(𝑣 − 1)(𝑒1𝑒2𝑣)

2(1− 𝑣)
(4.3)

where 𝑏 = 𝑒1(𝑓1 − 𝑣) + 𝑒2(𝑓2 − 𝑣).

Further details surrounding these EMA methods and their derivations as well as the depolarisation factor and anisotropy
are explored by both Markel and Humlicek.

4.7 Can I save models/objectives to a file?

Assuming that you have a ReflectModelSE or ObjectiveSE that you’d like to save to file, the easiest way to do this
is via serialisation to a Python pickle:

import pickle
save
with open('my_objective.pkl', 'wb+') as f:

pickle.dump(objective, f)

load
with open('my_objective.pkl', 'rb') as f:

restored_objective = pickle.load(f)

The saved pickle files are in a binary format and are not human readable. It may also be useful to save the representation,
repr(objective).

Alternatively, modelled results can be exported into a .csv file. An example of this is provided in Getting started.

4.7. Can I save models/objectives to a file? 17

https://doi.org/10.1364/JOSAA.33.001244
https://doi.org/10.1007/978-3-642-33956-1_3

refellips

18 Chapter 4. Frequently Asked Questions

CHAPTER

FIVE

TESTIMONIALS

Please cite the refellips paper if you use it for data analysis in your own publications:

“Robertson, H., Gresham, I.J., Prescott, S.W., Webber, G.B., Wanless, E.J., Nelson, A., 2022. SoftwareX
20, 101225. https://doi.org/10.1016/j.softx.2022.101225”

The following is a (possibly incomplete) list of publications that have used refellips let us know if your work should be
included in this list or fork the repository and add it yourself.

1. Hayden Robertson, Isaac J Gresham, Stuart W Prescott, Grant B Webber, Erica J Wanless, and Andrew Nel-
son. refellips: A Python package for the analysis of variable angle spectroscopic ellipsometry data. SoftwareX,
20:101225, 2022. doi:10.1016/j.softx.2022.101225.

2. Hayden Robertson, Joshua D Willott, Kasimir P Gregory, Edwin C Johnson, Isaac J Gresham, Andrew R J
Nelson, Vincent S J Craig, Stuart W Prescott, Robert Chapman, Grant B Webber, and Erica J Wanless. From
Hofmeister to hydrotrope: Effect of anion hydrocarbon chain length on a polymer brush. Journal of Colloid And
Interface Science, 634:983–994, 2023. doi:10.1016/j.jcis.2022.12.114.

3. Gregor Rudolph-Schöpping, Herje Schagerlöf, Ann-Sofi Jönsson, and Frank Lipnizki. Comparison of membrane
fouling during ultrafiltration with adsorption studied by quartz crystal microbalance with dissipation monitor-
ing (qcm-d). Journal of Membrane Science, 672:121313, 2023. URL: https://www.sciencedirect.com/science/
article/pii/S0376738822010584, doi:https://doi.org/10.1016/j.memsci.2022.121313.

19

https://doi.org/10.1016/j.softx.2022.101225
mailto:andyfaff+refellips@gmail.com
https://github.com/refnx/refellips
https://doi.org/10.1016/j.softx.2022.101225
https://doi.org/10.1016/j.jcis.2022.12.114
https://www.sciencedirect.com/science/article/pii/S0376738822010584
https://www.sciencedirect.com/science/article/pii/S0376738822010584
https://doi.org/https://doi.org/10.1016/j.memsci.2022.121313

refellips

20 Chapter 5. Testimonials

CHAPTER

SIX

API REFERENCE

6.1 refellips

6.1.1 Modules

refellips.dataSE

” A basic representation of a 1D dataset

class refellips.dataSE.DataSE(data=None, name=None, delimiter='\t', reflect_delta=False, **kwds)
Bases: object

A basic representation of a 1D dataset.

Parameters

• data ({str, file-like, Path, tuple of np.ndarray}, optional) – String
pointing to a data file. Alternatively it is a tuple containing the data from which the dataset
will be constructed. The tuple should have 4 members.

– data[0] - Wavelength (nm)

– data[1] - Angle of incidence (degree)

– data[2] - Psi

– data[3] - Delta

data must be four long. All arrays must have the same shape.

• mask (array-like) – Specifies which data points are (un)masked. Must be broadcastable
to the data. Data1D.mask = None clears the mask. If a mask value equates to True, then the
point is included, if a mask value equates to False it is excluded.

• reflect_delta (bool) – Specifies whether delta values are reflected around 180 degrees
(i.e., 360 - delta[delta > 180]), as is standard for some ellipsometry analysis packages (i.e.,
WVASE).

AOI

angle of incidence (degree)

Type
np.ndarray

mask

mask

21

refellips

Type
np.ndarray

filename

The file the data was read from

Type
str or None

weighted

Whether the y data has uncertainties

Type
bool

metadata

Information that should be retained with the dataset.

Type
dict

property aoi

Angle of incidence.

property data

4-tuple containing the (wavelength), AOI, psi, delta) data.

property delta

Ellipsometric parameter delta.

load(f)
Load a dataset from file. Must be a 4 column ASCII file with columns [wavelength, AOI, Psi, Delta].

Parameters
f (file-handle or string) – File to load the dataset from.

property psi

Ellipsometric parameter psi.

refresh()

Refreshes a previously loaded dataset.

save(f)
Save the data to file. Saves the data as a 4 column ASCII file.

Parameters
f (file-handle or string) – File to save the dataset to.

unique_wavelength_data()

Generator yielding wavelength, AOI, psi, delta tuples for the unique wavelengths in a dataset (i.e. all the
data points for a given wavelength)

Return type
wavelength, AOI, psi, delta

property wavelength

refellips.dataSE.custom_round(x, base=0.25)
Perform rounding to a particular base. Default base is 0.25.

Parameters

22 Chapter 6. API reference

refellips

• x (DataFrame, array or list) – Data to be rounded.

• base (float) – Base that the rounding will be with respect to.

Returns
Result of cutsom round

Return type
np.array

refellips.dataSE.open_EP4file(fname, reflect_delta=False)
Open and load in an Accurion EP4 formmated data file. Typically a .dat file.

Note: This file parser has been written for specific Accurion ellipsometers EP3 and EP4. No work has been
done to ensure it is compatible with all Accurion ellipsometers. If you have trouble with this parser contact the
maintainers through github.

Parameters

• fname (file-handle or string) – File to load the dataset from.

• reflect_delta (bool) – Option to reflect delta around 180 degrees (as WVASE would).

Returns
datasets – Structure containing wavelength, angle of incidence, psi and delta.

Return type
DataSE structure

refellips.dataSE.open_HORIBAfile(fname, reflect_delta=False, lambda_cutoffs=[-inf, inf])
Opening and loading in a data file created by a Horiba ellipsometer. Data file loaded should be of the Horiba file
format .spe.

Note: This file parser has been written for a specific ellipsometer, no work has been done to ensure it is compatable
with all Horiba ellipsometers. If you have trouble with this parser contact the maintainers through github.

Parameters

• fname (file-handle or string) – File to load the dataset from.

• reflect_delta (bool) – Option to reflect delta around 180 degrees (as WVASE would).

• lambda_cutoffs (list) – Specifies the minimum and maximum wavelengths of data to be
loaded. List has length 2.

Returns
DataSE – The data file structure from the loaded Horiba file.

Return type
DataSE structure

refellips.structureSE

class refellips.structureSE.ComponentSE(name='')
Bases: Component

A base class for describing the structure of a subset of an interface.

Parameters
name (str, optional) – The name associated with the Component

6.1. refellips 23

refellips

Notes

By setting the Component.interfaces property one can control the type of interfacial roughness between all the
layers of an interfacial profile.

class refellips.structureSE.MixedSlabSE(thick, ri_A, ri_B, vf_B, rough, name='', interface=None)
Bases: ComponentSE

A slab component made of two materials.

Parameters

• thick (refnx.analysis.Parameter or float) – thickness of slab (Angstrom)

• ri_A (ScattererSE) – refractive index of first material

• ri_B (ScattererSE) – refractive index of second material

• vf_B (float) – volume fraction of B in the layer. Volume fraction of A is calculated as 1 -
vf_B.

• rough (refnx.analysis.Parameter or float) – roughness on top of this slab
(Angstrom)

• name (str) – Name of this slab

• interface ({Interface, None}, optional) – The type of interfacial roughness associated
with the Slab. If None, then the default interfacial roughness is an Error function (also known
as Gaussian roughness).

property parameters

refnx.analysis.Parameters associated with this component

slabs(structure=None)
Slab representation of this component. See Component.slabs

class refellips.structureSE.ScattererSE(name='', wavelength=None)
Bases: Scatterer

Abstract base class for something that will have a refractive index. Inherited from refnx.reflect.structure.Scatterer

complex(wavelength)
Calculate a complex RI

Parameters
wavelength (float) – wavelength of light in nm

Returns
RI – refractive index and extinction coefficient

Return type
complex

class refellips.structureSE.SlabSE(thick, ri, rough, name='', vfsolv=0, interface=None)
Bases: ComponentSE

A slab component has uniform refractive index over its thickness

Parameters

• thick (refnx.analysis.Parameter or float) – thickness of slab (Angstrom)

• ri (refellips.ScattererSE) – (complex) RI of film

24 Chapter 6. API reference

refellips

• rough (refnx.analysis.Parameter or float) – roughness on top of this slab
(Angstrom)

• name (str) – Name of this slab

• vfsolv (refnx.analysis.Parameter or float) – Volume fraction of solvent [0, 1]

• interface ({Interface, None}, optional) – The type of interfacial roughness associated
with the Slab. If None, then the default interfacial roughness is an Error function (also known
as Gaussian roughness).

property parameters

refnx.analysis.Parameters associated with this component

slabs(structure=None)
Slab representation of this component. See Component.slabs

class refellips.structureSE.StructureSE(components=(), name='', solvent=None,
reverse_structure=False, contract=0, wavelength=None,
ema='linear', depolarisation_factor=0.3333333333333333)

Bases: Structure

Represents the interfacial Structure of an Ellipsometry sample. Successive Components are added to the Struc-
ture to construct the interface.

Parameters

• components (sequence) – A sequence of ComponentSE to initialise the Structure.

• name (str) – Name of this structure

• solvent (ScattererSE) – Specifies the refractive index of the solvent used for solvation.
If no solvent is specified then the RI of the solvent is assumed to be the RI of Structure[-
1].slabs()[-1] (after any possible slab order reversal).

• reverse_structure (bool) – If StructureSE.reverse_structure is True then the slab rep-
resentation produced by StructureSE.slabs is reversed. The sld profile and calculated reflec-
tivity will correspond to this reversed structure.

• contract (float) – If contract > 0 then an attempt to contract/shrink the slab representation
is made. Use larger values for coarser profiles (and vice versa). A typical starting value to
try might be 1.0.

• wavelength (float, None) – Wavelength the sample was measured at.

• ema ({'linear', 'maxwell-garnett', 'bruggeman'}) – Specifies the effective medium
approximation for how the RI of a Component is mixed with the RI of the solvent. Further
details regarding mixing are explained in the slabs method.

• depolarisation_factor (float, int) – The depolarisation factor is used only in the
EMA calculations for the Maxwell-Garnett and Bruggeman methods. It describes the electric
field screening: 0 prescribing no screening and 1 prescribing maximum screening.

append(item)

Append a Component to the Structure.

Parameters
item (refnx.reflect.Component) – The component to be added.

contract

float if contract > 0 then an attempt to contract/shrink the slab representation is made. Use larger values
for coarser profiles (and vice versa). A typical starting value to try might be 1.0.

6.1. refellips 25

refellips

property depolarisation_factor

overall_ri(slabs, solvent)
Calculates the overall refractive index of the material and solvent RI in a layer.

Parameters

• slabs (np.ndarray) – Slab representation of the layers to be averaged.

• solvent (complex or ScattererSE) – RI of solvating material.

Returns
averaged_slabs – the averaged slabs.

Return type
np.ndarray

plot(pvals=None, samples=0, fig=None, align=0)
Plot the structure.

Requires matplotlib be installed.

Parameters

• pvals (np.ndarray, optional) – Numeric values for the Parameter’s that are varying

• samples (number) – If this structures constituent parameters have been sampled, how
many samples you wish to plot on the graph.

• fig (Figure instance, optional) – If fig is not supplied then a new figure is created.
Otherwise the graph is created on the current axes on the supplied figure.

• align (int, optional) – Aligns the plotted structures around a specified interface in
the slab representation of a Structure. This interface will appear at z = 0 in the sld plot.
Note that Components can consist of more than a single slab, so some thought is required
if the interface to be aligned around lies in the middle of a Component. Python indexing is
allowed, e.g. supplying -1 will align at the backing medium.

Returns
fig, ax – matplotlib figure and axes objects.

Return type
matplotlib.Figure, matplotlib.Axes

reflectivity()

Calculate theoretical reflectivity of this structure

Parameters

• q (array-like) – Q values (Angstrom**-1) for evaluation

• threads (int, optional) – Specifies the number of threads for parallel calculation.
This option is only applicable if you are using the _creflect module. The option is
ignored if using the pure python calculator, _reflect. If threads == 0 then all available
processors are used.

26 Chapter 6. API reference

refellips

Notes

Normally the reflectivity will be calculated using the Nevot-Croce approximation for Gaussian roughness
between different layers. However, if individual components have non-Gaussian roughness (e.g. Tanh),
then the overall reflectivity and SLD profile are calculated by micro-slicing. Micro-slicing involves calcu-
lating the specific SLD profile, dividing it up into small-slabs, and calculating the reflectivity from those.
This normally takes much longer than the Nevot-Croce approximation. To speed the calculation up the
Structure.contract property can be used.

ri_profile(z=None, align=0, max_delta_z=None)
Calculates an RI profile, as a function of distance through the interface.

Parameters

• z (float) – Interfacial distance (Angstrom) measured from interface between the fronting
medium and the first layer.

• align (int, optional) – Places a specified interface in the slab representation of a
Structure at z = 0. Python indexing is allowed, e.g. supplying -1 will place the backing
medium at z = 0.

• max_delta_z ({None, float}, optional) – If specified this will control the maxi-
mum spacing between SLD points. Only used if z is None.

Returns
ri – refractive index

Return type
float

Notes

This can be called in vectorised fashion.

slabs(**kwds)
The slab representation of this structure.

Returns

slabs – Slab representation of this structure. Has shape (N, 5).

• slab[N, 0]
thickness of layer N

• slab[N, 1]
overall RI.real of layer N (material AND solvent)

• slab[N, 2]
overall RI.imag of layer N (material AND solvent)

• slab[N, 3]
roughness between layer N and N-1

• slab[N, 4]
volume fraction of solvent in layer N.

Return type
np.ndarray

6.1. refellips 27

refellips

Notes

If Structure.reversed is True then the slab representation order is reversed. The slab order is reversed before
the solvation calculation is done. I.e. if Structure.solvent == ‘backing’ and Structure.reversed is True then
the material that solvates the system is the component in Structure[0], which corresponds to Structure.slab[-
1].

Users can simulate mixing between two adjacent layers by specifying a volume fraction of solvent (vfsolv).
The overall_ri function then performs the EMA using the specified method: ‘linear’, ‘maxwell-garnett’ or
‘bruggeman’. All EMA calculations are performed by using the complex dielectric function (i.e., square of
refractive index and extinction coefficient). For a host layer (e_h) with volume fraction (vf) of impurities
(e_i), the overall RI is calculated by

>>> StructureSE.ema = 'linear'
e_linear = e_h * (1 - vf) + e_i * vf

>>> StructureSE.ema = 'maxwell-garnett'
>>> StructureSE.depolarisation_factor = 1/3
top = e_h + (depolarisation_factor * (1 - vf) + vf) * (e_i - e_h)
bottom = e_h + depolarisation_factor * (1 - vf) * (e_i - e_h)
e_MG = e_h * top_r / bottom_r

>>> StructureSE.ema = 'bruggeman'
>>> StructureSE.depolarisation_factor = 1/3
b = e_h * ((1 - vf) - depolarisation_factor) + e_i * (vf - depolarisation_
→˓factor)
e_BG = (b + np.sqrt(b**2 - 4 * (depolarisation_factor - 1) *

(vf * e_h * e_i * depolarisation_factor
))) / (2 * (1 - depolarisation_factor))

sld_profile = None

property solvent

refellips.structureSE.nm_eV_conversion(val)
Convert wavelength from nm to eV -or- Convert wavelength from nm to eV

It does both. Visible light has a range of energies from 1.77 (red) to 3.26 (blue) eV

refellips.structureSE.overall_ri(ri_A, ri_B, vf_B=0.0, ema='linear',
depolarisation_factor=0.3333333333333333)

Calculates the overall refractive index of two materials.

Parameters

• ri_A (complex, array-like) – RI of material A

• ri_B (complex) – RI of material B

• vf_B (float, optional) – volume fraction of material B. The volume fraction of A is
calculated as 1 - vf_B.

• ema ({'linear', 'maxwell-garnett', 'bruggeman'}) – Specifies how refractive indices
are mixed together.

• depolarisation_factor (float, optional) – Depolarisation factor. Default is 1/3.

Returns
ri_avg – the averaged material RI

28 Chapter 6. API reference

refellips

Return type
complex

refellips.objectiveSE

class refellips.objectiveSE.ObjectiveSE(model, data, lnsigma=None, use_weights=True,
transform=None, logp_extra=None, name=None)

Bases: BaseObjective

Objective function for using with curvefitters such as refnx.analysis.curvefitter.CurveFitter.

Parameters

• model (refnx.analysis.Model) – the residuals model function. One can also provide an
object that inherits refnx.analysis.Model.

• data (refnx.dataset.Data1D) – data to be analysed.

• lnsigma (float or refnx.analysis.Parameter, optional) – Used if the experi-
mental uncertainty (data.y_err) underestimated by a constant fractional amount. The exper-
imental uncertainty is modified as:

s_n**2 = y_err**2 + exp(lnsigma * 2) * model**2

See Objective.logl for more details.

• use_weights (bool) – use experimental uncertainty in calculation of residuals and logl, if
available. If this is set to False, then you should also set self.lnsigma.vary = False, it will
have no effect on the fit.

• transform (callable, optional) – the model, data and data uncertainty are trans-
formed by this function before calculating the likelihood/residuals. Has the signature trans-
form(data.x, y, y_err=None), returning the tuple (transformed_y, transformed_y_err).

• logp_extra (callable, optional) – user specifiable log-probability term. This contri-
bution is in addition to the log-prior term of the model parameters, and model.logp, as well
as the log-likelihood of the data. Has signature: logp_extra(model, data). The model will
already possess updated parameters. Beware of including the same log-probability terms
more than once.

• name (str) – Name for the objective.

Notes

For parallelisation logp_extra needs to be picklable.

chisqr(pvals=None)
Calculates the chi-squared value for a given fitting system.

Parameters
pvals (array-like or refnx.analysis.Parameters) – values for the varying or entire
set of parameters

Returns
chisqr – Chi-squared value, np.sum(residuals**2).

Return type
np.ndarray

6.1. refellips 29

refellips

covar()

Estimates the covariance matrix of the curvefitting system.

Returns
covar – Covariance matrix

Return type
np.ndarray

logl(pvals=None)
Calculate the log-likelhood of the system.

Parameters
pvals (array-like or refnx.analysis.Parameters) – values for the varying or entire
set of parameters

Returns
logl – log-likelihood probability

Return type
float

Notes

The log-likelihood is calculated as:

logl = -0.5 * np.sum(((y - model) / s_n)**2
+ np.log(2 * pi * s_n**2))

logp += self.model.logp()
logp += self.logp_extra(self.model, self.data)

where

s_n**2 = y_err**2 + exp(2 * lnsigma) * model**2

At the moment s_n**2, the variance of the measurement uncertainties, is assumed to be unity. A future
release may implement those uncertainties

logp(pvals=None)
Calculate the log-prior of the system.

Parameters
pvals (array-like or refnx.analysis.Parameters) – values for the varying or entire
set of parameters

Returns
logp – log-prior probability

Return type
float

30 Chapter 6. API reference

refellips

Notes

The log-prior is calculated as:

logp = np.sum(param.logp() for param in
self.varying_parameters())

logpost(pvals=None)
Calculate the log-probability of the curvefitting system

Parameters
pvals (array-like or refnx.analysis.Parameters) – values for the varying or entire
set of parameters

Returns
logpost – log-probability

Return type
float

Notes

The overall log-probability is the sum of the log-prior and log-likelihood. The log-likelihood is not calcu-
lated if the log-prior is impossible (logp == -np.inf).

property npoints

int the number of points in the dataset.

property parameters

refnx.analysis.Parameters, all the Parameters contained in the fitting system.

pgen(ngen=1000, nburn=0, nthin=1)
Yield random parameter vectors from the MCMC samples. The objective state is not altered.

Parameters

• ngen (int, optional) – the number of samples to yield. The actual number of samples
yielded is min(ngen, chain.size)

• nburn (int, optional) – discard this many steps from the start of the chain

• nthin (int, optional) – only accept every nthin samples from the chain

Yields
pvec (np.ndarray) – A randomly chosen parameter vector

plot(xaxis=None, plot_labels=True, fig=None)
Plot the data/model.

Requires matplotlib be installed.

Parameters

• xaxis (String, optional) – Either ‘aoi’ or ‘wavelength’. If none specified, ‘wave-
length’ will be chosen unless there is more than 1 unique aoi.

• plot_labels (Bool, optional) – Whether to plot axis labels. The default is True.

• fig (Figure instance, optional) – If fig is not supplied then a new figure is created.
Otherwise the graph is created on the current axes on the supplied figure.

6.1. refellips 31

refellips

Returns
fig, ax – matplotlib figure and axes objects.

Return type
matplotlib.Figure, matplotlib.Axes

prior_transform(u)
Calculate the prior transform of the system.

Transforms uniform random variates in the unit hypercube, u ~ uniform[0.0, 1.0), to the parameter space
of interest, according to the priors on the varying parameters.

Parameters
u (array-like) – Size of the varying parameters

Returns
pvals – Scaled parameter values

Return type
array-like

Notes

If a parameter has bounds, x ~ Unif[-10, 10) then the scaling from u to x is done as follows:

x = 2. * u - 1. # scale and shift to [-1., 1.)
x *= 10. # scale to [-10., 10.)

residuals(pvals=None)
Calculates the residuals for a given fitting system.

Parameters
pvals (array-like or refnx.analysis.Parameters) – values for the varying or entire
set of parameters

Returns
residuals – Residuals, (data.y - model) / y_err.

Return type
np.ndarray

setp(pvals)
Set the parameters from pvals.

Parameters
pvals (array-like or refnx.analysis.Parameters) – values for the varying or entire
set of parameters

varying_parameters()

Returns
varying_parameters – The varying Parameter objects allowed to vary during the fit.

Return type
refnx.analysis.Parameters

property weighted

bool Does the data have weights (data.y_err), and is the objective using them?

32 Chapter 6. API reference

refellips

refellips.reflect_modelSE

refellips.reflect_modelSE.Delta_Psi_TMM(AOI, layers, wavelength, delta_offset, reflect_delta=False)
Get delta and psi using the transfer matrix method.

Parameters

• AOI (array_like) – the angle of incidence values required for the calculation. Units =
degrees

• Wavelength (float) – Wavelength of light. Units = nm

• layers (np.ndarray) – coefficients required for the calculation, has shape (2 + N, 4), where
N is the number of layers layers[0, 1] - refractive index of fronting layers[0, 2] - extinction
coefficent of fronting layers[N, 0] - thickness of layer N layers[N, 1] - refractive index of layer
N layers[N, 2] - extinction coefficent of layer N layers[N, 3] - roughness between layer N-1/N
(IGNORED!) layers[-1, 1] - refractive index of backing layers[-1, 2] - extinction coefficent
of backing layers[-1, 3] - roughness between backing and last layer (IGNORED!)

Returns

• Psi (np.ndarray) – Calculated Psi values for each aoi value.

• Delta (np.ndarray) – Calculated Delta values for each aoi value.

class refellips.reflect_modelSE.ReflectModelSE(structure, delta_offset=0, name=None)
Bases: object

Parameters

• structure (refnx.reflect.Structure) – The interfacial structure.

• name (str, optional) – Name of the Model

logp()

Additional log-probability terms for the reflectivity model. Do not include log-probability terms for model
parameters, these are automatically included elsewhere.

Returns
logp – log-probability of structure.

Return type
float

model(wavelength_aoi, p=None)
Calculate the ellipsometric values (psi, delta) of this model

Parameters

• wavelength_aoi (array-like) – An array of shape (N, 2) corresponding to the wave-
lengths (nm) and angle of incidences (deg) the ellipsometric measurements were performed
at.

• p (refnx.analysis.Parameters, optional) – parameters required to calculate the
model

Returns
psi, delta – Calculated ellipsometric parameters

Return type
np.ndarray

6.1. refellips 33

refellips

property parameters

refnx.analysis.Parameters - parameters associated with this model.

property structure

refnx.reflect.Structure - object describing the interface of a reflectometry sample.

refellips.reflect_modelSE.coh_tmm(n_list, d_list, th_0, lam_vac)
Code adapted by that of Byrnes - see https://arxiv.org/abs/1603.02720

n_list is the list of refractive indices, in the order that the light would pass through them. The 0’th element of the
list should be the semi-infinite medium from which the light enters, the last element should be the semi- infinite
medium to which the light exits (if any exits).

th_0 is the angle of incidence: 0 for normal, pi/2 for glancing. Remember, for a dissipative incoming medium
(n_list[0] is not real), th_0 should be complex so that n0 sin(th0) is real (intensity is constant as a function of
lateral position).

d_list is the list of layer thicknesses (front to back). Should correspond one-to-one with elements of n_list. First
and last elements should be “inf”.

lam_vac is vacuum wavelength of the light.

refellips.reflect_modelSE.interface_r_p(n_i, n_f, th_i, th_f)

refellips.reflect_modelSE.interface_r_s(n_i, n_f, th_i, th_f)

refellips.reflect_modelSE.interface_t_p(n_i, n_f, th_i, th_f)

refellips.reflect_modelSE.interface_t_s(n_i, n_f, th_i, th_f)

34 Chapter 6. API reference

https://arxiv.org/abs/1603.02720

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

35

refellips

36 Chapter 7. Indices and tables

PYTHON MODULE INDEX

r
refellips.dataSE, 21
refellips.objectiveSE, 29
refellips.reflect_modelSE, 33
refellips.structureSE, 23

37

refellips

38 Python Module Index

INDEX

A
AOI (refellips.dataSE.DataSE attribute), 21
aoi (refellips.dataSE.DataSE property), 22
append() (refellips.structureSE.StructureSE method), 25

C
chisqr() (refellips.objectiveSE.ObjectiveSE method), 29
coh_tmm() (in module refellips.reflect_modelSE), 34
complex() (refellips.structureSE.ScattererSE method),

24
ComponentSE (class in refellips.structureSE), 23
contract (refellips.structureSE.StructureSE attribute),

25
covar() (refellips.objectiveSE.ObjectiveSE method), 29
custom_round() (in module refellips.dataSE), 22

D
data (refellips.dataSE.DataSE property), 22
DataSE (class in refellips.dataSE), 21
delta (refellips.dataSE.DataSE property), 22
Delta_Psi_TMM() (in module refel-

lips.reflect_modelSE), 33
depolarisation_factor (refel-

lips.structureSE.StructureSE property), 25

F
filename (refellips.dataSE.DataSE attribute), 22

I
interface_r_p() (in module refel-

lips.reflect_modelSE), 34
interface_r_s() (in module refel-

lips.reflect_modelSE), 34
interface_t_p() (in module refel-

lips.reflect_modelSE), 34
interface_t_s() (in module refel-

lips.reflect_modelSE), 34

L
load() (refellips.dataSE.DataSE method), 22
logl() (refellips.objectiveSE.ObjectiveSE method), 30

logp() (refellips.objectiveSE.ObjectiveSE method), 30
logp() (refellips.reflect_modelSE.ReflectModelSE

method), 33
logpost() (refellips.objectiveSE.ObjectiveSE method),

31

M
mask (refellips.dataSE.DataSE attribute), 21
metadata (refellips.dataSE.DataSE attribute), 22
MixedSlabSE (class in refellips.structureSE), 24
model() (refellips.reflect_modelSE.ReflectModelSE

method), 33
module

refellips.dataSE, 21
refellips.objectiveSE, 29
refellips.reflect_modelSE, 33
refellips.structureSE, 23

N
nm_eV_conversion() (in module refellips.structureSE),

28
npoints (refellips.objectiveSE.ObjectiveSE property), 31

O
ObjectiveSE (class in refellips.objectiveSE), 29
open_EP4file() (in module refellips.dataSE), 23
open_HORIBAfile() (in module refellips.dataSE), 23
overall_ri() (in module refellips.structureSE), 28
overall_ri() (refellips.structureSE.StructureSE

method), 26

P
parameters (refellips.objectiveSE.ObjectiveSE prop-

erty), 31
parameters (refellips.reflect_modelSE.ReflectModelSE

property), 33
parameters (refellips.structureSE.MixedSlabSE prop-

erty), 24
parameters (refellips.structureSE.SlabSE property), 25
pgen() (refellips.objectiveSE.ObjectiveSE method), 31
plot() (refellips.objectiveSE.ObjectiveSE method), 31
plot() (refellips.structureSE.StructureSE method), 26

39

refellips

prior_transform() (refellips.objectiveSE.ObjectiveSE
method), 32

psi (refellips.dataSE.DataSE property), 22

R
refellips.dataSE

module, 21
refellips.objectiveSE

module, 29
refellips.reflect_modelSE

module, 33
refellips.structureSE

module, 23
reflectivity() (refellips.structureSE.StructureSE

method), 26
ReflectModelSE (class in refellips.reflect_modelSE), 33
refresh() (refellips.dataSE.DataSE method), 22
residuals() (refellips.objectiveSE.ObjectiveSE

method), 32
ri_profile() (refellips.structureSE.StructureSE

method), 27

S
save() (refellips.dataSE.DataSE method), 22
ScattererSE (class in refellips.structureSE), 24
setp() (refellips.objectiveSE.ObjectiveSE method), 32
slabs() (refellips.structureSE.MixedSlabSE method), 24
slabs() (refellips.structureSE.SlabSE method), 25
slabs() (refellips.structureSE.StructureSE method), 27
SlabSE (class in refellips.structureSE), 24
sld_profile (refellips.structureSE.StructureSE at-

tribute), 28
solvent (refellips.structureSE.StructureSE property), 28
structure (refellips.reflect_modelSE.ReflectModelSE

property), 34
StructureSE (class in refellips.structureSE), 25

U
unique_wavelength_data() (refellips.dataSE.DataSE

method), 22

V
varying_parameters() (refel-

lips.objectiveSE.ObjectiveSE method), 32

W
wavelength (refellips.dataSE.DataSE property), 22
weighted (refellips.dataSE.DataSE attribute), 22
weighted (refellips.objectiveSE.ObjectiveSE property),

32

40 Index

	Installation
	Getting started
	Fitting an ellipsometry dataset
	Loading a dataset
	Creating a model for our interface
	Creating an objective
	Fitting the data
	Optimised model and data post fit
	Using the plotting tools
	Saving the objective

	Examples
	Frequently Asked Questions
	What’s the best way to ask for help or submit a bug report?
	What are the ‘fronting’ and ‘backing’ media?
	What formats/types of ellipsometry data does refellips handle?
	Where do I find dispersion curves for a material?
	How do I make my own dielectric function/dispersion curve?
	What EMA methods does refellips provide?
	Can I save models/objectives to a file?

	Testimonials
	API reference
	refellips
	Modules
	refellips.dataSE
	refellips.structureSE
	refellips.objectiveSE
	refellips.reflect_modelSE

	Indices and tables
	Python Module Index
	Index

